SQL Server 2008 Performance Troubleshooting Part 1

Like Chennai SQL Server User Group

Blog: http://sql-articles.com/category/cssug/

Ramkumar Gopal Living For SQL Server

Blog: http://www.sqlservercentral.com/blogs/livingforsqlserver/

Like http://www.facebook.com/LivingForSqlServer

Chennai SQL Server User Group (CSSUG) Meet – 19 Jan 2013

Reference and Courtesy

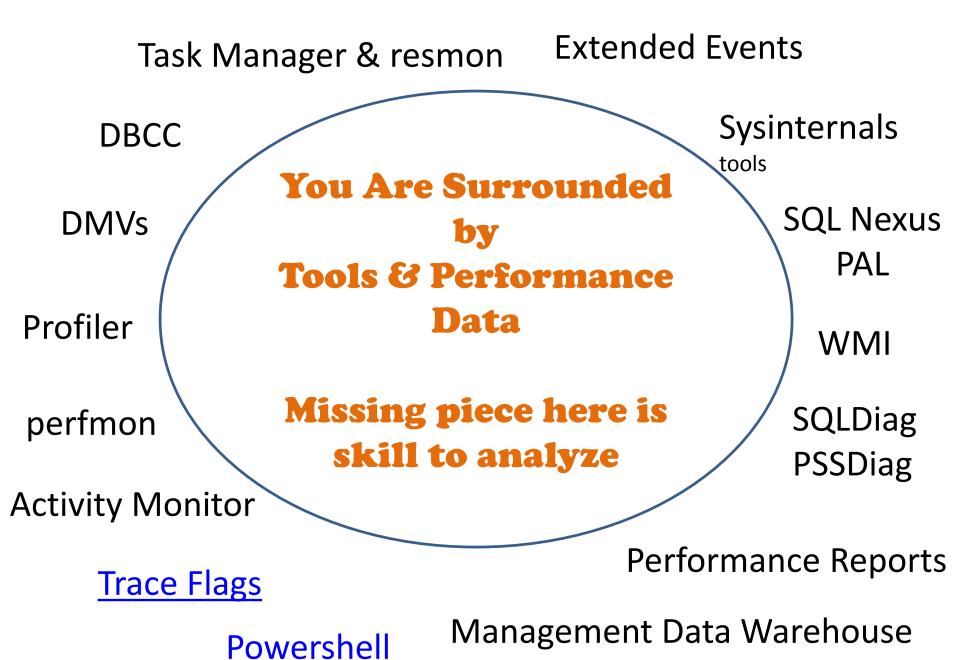
For technical accuracy
I have used some content, images and scripts from below sources.

Memory Internals:

http://channel9.msdn.com/Events/TechEd/Europe/2010/WCL401

SQL Server 2008 Performance Troubleshooting http://msdn.microsoft.com/en-us/library/dd672789(v=sql.100).aspx

Free ebook: Troubleshooting SQL Server A Guide for the Accidental DBA By Jonathan Kehayias and Ted Krueger www.sqlservercentral.com/books/


SQLOS:

http://blogs.msdn.com/b/slavao/

Agenda

Part 1 (More focus on Memory Internals)

- Missing piece is not performance data
- Understand Compatibility and Limitations
- There are lot more to understand
 - Memory Internals
 - Process Explorer (Server level/Process level)
 - VMMap (Process level)
- Ugly way to understand this better (Demo)

Back to Basics: 32/64 bit compatibility

Hardware OS		SQL Server	Compatibility	Memory Limitations			
32 bit	32 bit	32 bit	Possible	4 GB. AWE to access > 4 GB			
32 bit	32 bit	64 bit	Not Possible				
32 bit	64 bit	32 bit	Not Possible				
32 bit	64 bit	64 bit	Not Possible				
64 bit	32 bit	32 bit	Possible	4 GB. AWE to access > 4 GB			
64 bit	32 bit	64 bit	Not Possible				
64 bit	64 bit	32 bit	Possible	4 GB. AWE to access > 4 GB			
64 bit	64 bit	64 bit	Possible				

Note:

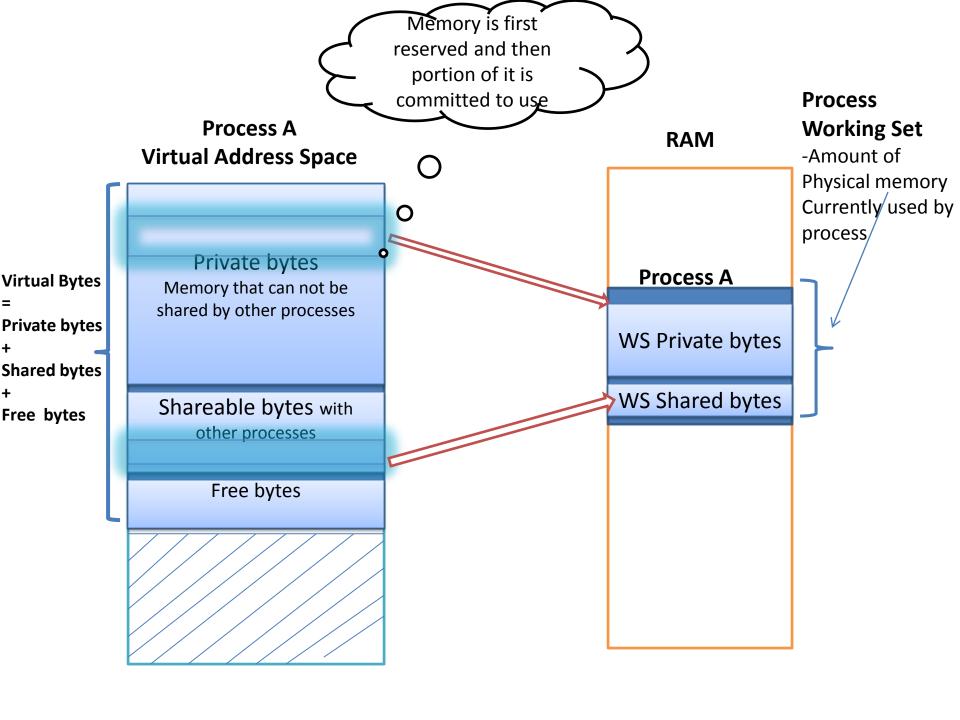
32 bit and 64 bit refers x86 and x64 respectively. IA64 not covered here.

Exception: SQL Server 2012 32 bit can't use more than 4 GB.

Further read: http://mikedimmick.blogspot.in/2006/03/whats-difference-between-x64-and-ia-64.html

Back to basics: Memory Limitations

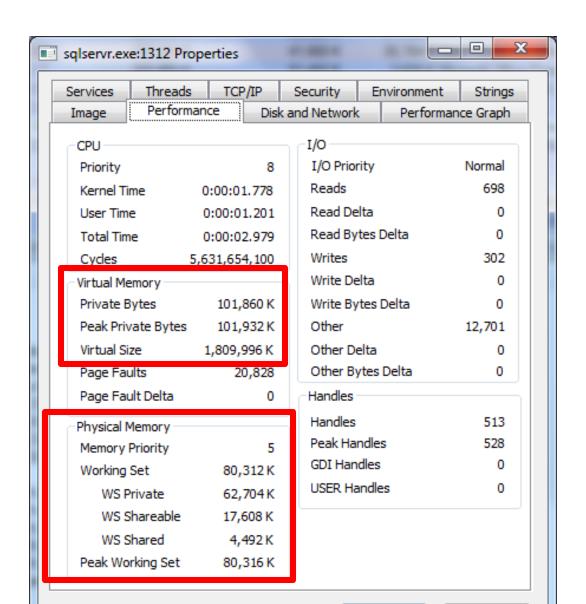
SQL Server Editions	WINDOWS DATACENTER			WINDOWS ENTERPRISE				WINDOWS STANDARD				
	2008		2003 R2 SP2		2008		2003 R2 SP2		2008		2003 R2 SP2	
•	32-BIT	64-BIT	32-BIT	64-BIT	32-BIT	64-BIT	32-BIT	64-BIT	32-BIT	64-BIT	32-BIT	64-BIT
Enterprise	64GB	2TB	128GB	2TB	64GB	2TB	64GB	2TB	4GB	32GB	4GB	32GB
Developer	64GB	2TB	128GB	2TB	64GB	2TB	64GB	2TB	4GB	32GB	4GB	32GB
Standard	64GB	2TB	128GB	2TB	64GB	2TB	64GB	2TB	4GB	32GB	4GB	32GB
Web	64GB	2TB	128GB	2TB	64GB	2TB	64GB	2TB	4GB	32GB	4GB	32GB
Workgroup	64GB	4GB	128GB	4GB	64GB	4GB	64GB	4GB	4GB	4GB	4GB	4GB
Express	1GB	N/A	1GB	N/A	1GB	N/A	1GB	N/A	1GB	N/A	1GB	N/A

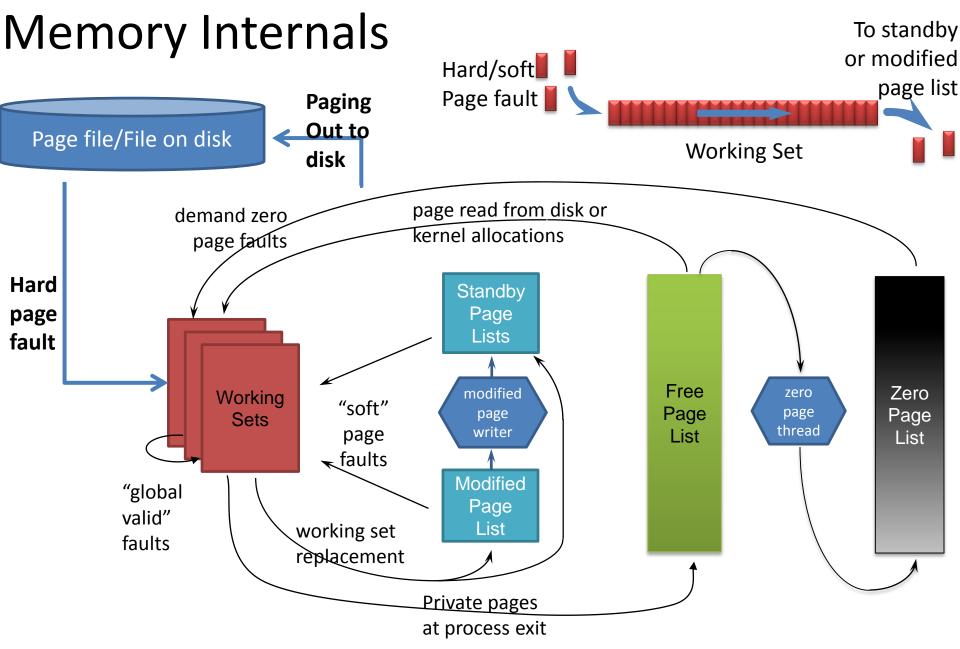

Reference:

http://definitionplus.org/blog/?p=81

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366778(v=vs.85).aspx

There are lot more to understand before troubleshooting


- Memory Internals
- Process Explorer
- VMMap



Process VAS

- Address space breakdown
 - ☐ Private (e.g. process heap)
 - Reserved or committed
 - ☐ Shareable (e.g. EXE, DLL, shared memory etc.)
 - Reserved or committed
 - ☐ Free (not yet defined)
- Performance counters available:
 - Private Bytes committed private memory
 - Virtual Bytes total of shareable + private

Memory consumption by a process **Process Explorer**

Reference & Courtesy: Mark Russinovich

Source: Mysteries of Windows Memory Management Revealed – Tech-Ed Europe 2010

Memory Internals – Working Sets

- Working Sets Amount of Physical Memory currently in use by the process
- ☐ New pages are allocated to working sets from the top of the **free or zero page list**

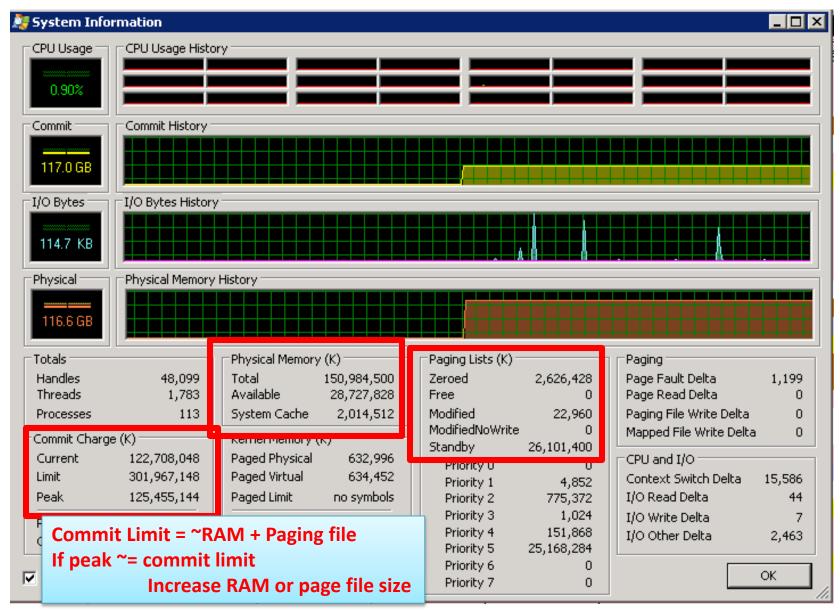
Pages released from the working set due to working set replacement go to the bottom of:

- ✓ The modified page list (if they were modified while in the working set)
- ✓ The standby page list (if not modified)

Reference & Courtesy: Mark Russinovich

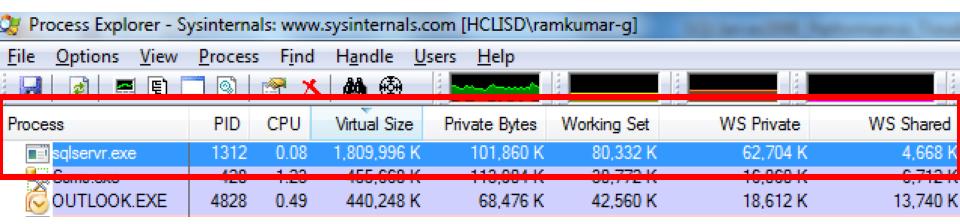
Source: Mysteries of Windows Memory Management Revealed – Tech-Ed Europe 2010

Memory Internals


Modified pages and Standby pages

- ☐ Modified pages go to **modified (dirty) list**Avoids writing pages back to disk too soon
- ☐ Unmodified pages go to **standby lists**

They form a system-wide **cache** of "pages likely to be needed again"


Pages can be faulted back into a process from the standby and modified page list (**Soft page faults**)

Overall Memory Condition – Healthy/Pressure? Process Explorer

Process-wise CPU/Memory Consumption

Process Explorer - Summary

Sqlservr.exe Memory Consumption – In detail **VMMap**

Туре	Size	Committed	Private	Total WS	Private WS	Shareable WS	Shared WS
Total	1,815,188 K	179,364 K	102,352 K	84,772 K	67,144 K	17,628 K	4,508 K
lmage	78,384 K	78,384 K	8,600 K	21,480 K	4,636 K	16,844 K	4,096 K
Mapped File	5,528 K	5,528 K		408 K		408 K	328 K
Shareable	3,892 K	1,636 K		368 K		368 K	76 K
Heap	8,512 K	3,072 K	3,008 K	1,904 K	1,900 K	4 K	4 K
Managed Heap							
Stack	25,088 K	22,668 K	22,668 K	1,700 K	1,700 K		
Private Data	1,688,856 K	63,148 K	63,148 K	53,984 K	53,980 K	4 K	4 K
Page Table	4,928 K	4,928 K	4,928 K	4,928 K	4,928 K		
Free	286,828 K						

There is an ugly way to understand this better

Run below batch and observe process explorer

```
create table tab1(col1 char(7000))
go
set nocount on
insert into tab1 values ('a')
go 1000000
```

Questions?